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Abstract. We describe a new model for a statistical ensemble of polymers on a cubic lattice 
with periodic boundary conditions. The system produced describes a network of polymers 
at intermediate concentrations and, therefore, it obeys des Cloizeaux’s law. The great 
interest of the model is stressed. 

A Monte Carlo model to simulate strings on a d = 3 spatial dimensional cubic lattice 
with periodic boundary conditions (3-torus) has recently been developed to show the 
existence of a new scaling region in the very long string sector [l] .  Polymer theory 
helps in understanding string correlations [2]. In fact, these correlations are given by 
a screening phenomenon (short range correlations) and by global effects (long range 
correlations) which are all induced by the topology of the manifold (see also the exact 
calculations in two dimensions of Duplantier and David [3]). By this suggestion, as 
we shall see below, this system of strings is exactly a system of self-avoiding walks 
(SAWS) or polymers [4] in a ‘reduced irregular lattice’. Therefore, we shall refer to 
‘polymers’ in the following. 

Let us now give a summary description of our Monte Carlo model to generate 
polymers. It has been developed in great detail in [2] and [5]. 

In a 3~ cubic lattice with periodic boundary conditions we choose at random, on 
each site of a cell, an element of the discrete Z3 cyclic group (i.e. [0, 1,2]). We consider, 
for any plaquette, the ordered sets 0120,0112,0122 and the reversed-ordered sets 0210, 
21 10, 2210 with all the possible cyclic permutations. A polymer point is identified by 
any of the above combinations if one of them is realised by the site-values of the given 
plaquette. The polymer point is then placed at the centre of the plaquette. For any 
other combination we have no polymer point associated with the corresponding 
plaquette. Polymer points have a ‘sign’ which is positive if they are given by one of 
the former sets of site values or negative if they are given by one of the latter sets. 
Hence, these polymers (such as polyelectrolytes) are oriented, depending on the sign 
of the polymer points, looking at the plaquette by the right-hand rule with respect to 
the positive directions of a conventional reference frame. Starting from any polymer 
point, we go from cell to cell reading the site values of every plaquette, searching for 
the next polymer point with the right sign and, then, linking the latter to the former. 
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We trace the polymer until we gain its end. The algorithm does not stop until every 
polymer point has been considered. 

We remark on three special ‘constructive features’ of the model. 
( a )  Each polymer point is never passed twice. 
( 6 )  The possible number of polymer points on the plaquettes constituting the faces 

of a cell can be 0 , 2  or 4. We have the 66% of cells with two polymer points (two-point 
cells) and the 10% of cells with four polymer points (four-point cells) respectively in 
the lattice volume V. 

(c) For any polymer point at the centre of a plaquette through which the ‘oriented’ 
polymer enters a cell there is at least another polymer point (there are two in the 
four-point cell, see below), on one of the other faces of the same cell, which does not 
let the ‘oriented’ polymer stop. 

Elsewhere [2] we have given a physical explanation of these ‘intrinsic’ properties 
of the model. However, as we shall also suggest below, they are deeply related to the 
topological nature of the group structure of the corresponding ‘continuum’ model. 
Here, we are only interested in the pure geometrical algorithm which ‘naturally 
implements’ the properties listed above. 

Two choices have been made on the model. 
(i) Periodic boundary conditions have been imposed to force the walk to return 

into its initial position, so that only closed polymers exist in the system. 
(ii)  In the four-point cell, when one point has been reached by the polymer, the 

oriented polymer can continue its walk through two of the other three points left. Two 
of the three points left have the right sign to let the polymer go ahead. Because of no 
dynamical input (see below) we make a random choice getween the two polymer points 
with the right to ensure the complete ‘local randomness’ into the system. 

Before dealing with the main result of the letter, we must emphasise the great 
generality of this pure geometrical model. 

It can be used for a realisation of Abelian strings on a lattice. Strings are solutions 
of gauge theories in which the spontaneous symmetry breaking of a Lie group G into 
a subgroup H of G determines a non-trivial .rr,(G/H) group [2,6]. Strings are Abelian 
if G is Abelian. In the discrete approximation we have used, the G / H  group has been 
represented by the Z 3  group. Again, the same approximation is implied if localisations 
or topological line defects are produced in a model whose group G (the symmetry of 
the dynamical model itself instead of G/H)  implies a fundamental homotopical group 
r1(G)  different from zero (such as it is in low temperature physics [ 6 ]  for vortices in 
superconductors or in superfluids). Finally, when the algorithm introduced above, 
given on the lattice by the mathematical correspondence between the Z3 group and 
the plaquette, is accepted without any topological group theory background, we can 
consider [2] the walks generated just as polymers. This is the limit in which all these 
physical objects are only geometrical linear objects without any thickness or intrinsic 
structure. In fact, once generated the polymer points on the lattice plaquettes, we 
essentially restrict our consideration to that irregular lattice only made by the set of 
polymer points themselves. We have a 3~ ‘reduced irregular lattice’ made by L =  
3N3x0.296 points. Of course, 0.296 is the probability of a polymer point given, of 
course, by model building and 3 N 3  the number of plaquettes of the original lattice 
having imposed periodic boundary conditions. The total length L of the system is 
almost constant [2] because of only Monte Carlo fluctuations of the order of I /  

Turning to the original cubic lattice, we stress that very important implications 
come from the existence of a cell whose faces have four polymer points (four-point cell). 
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The four-point cells imply the possibility of polymer-polymer interaction. We must 
emphasise that the link size is a persistence length into the system. We mean that 
inside a cell volume the system ignores what ‘locally’ happens. Then, if it is not defined 
by any explicit dynamics in the model, one does not know what interaction, if any, is 
present between polymers. However, in a polymer model for our walks, the excluded 
volume dynamics would be enough to constrain a ‘local’ repulsion in the four-point 
cells between any two polymers. Therefore, polymers would exactly be SAWS. 

In a string model for the walks, again, we do not know what happens ‘locally’ if 
we have no dynamics. What we know from the general dynamical theory [7] is that 
strings can a priori pass through each other, topologically interchange their branches 
or be  SAW^. Recently, numerical simulations have shown [SI that oriented strings have 
usually a very low probability to pass through each other. Thus, in the scenario we 
are considering we exclude that strings can pass through each other. 

However, in [2], we have shown that in spite of any dynamics, explicitly imposed 
by the model, the system has always (implicit) ‘configuration’ correlations ‘on a torus’, 
coming from the topology of the strings naturally induced by the topology of the 
manifold itself. In fact, very long thin strings show non-local interactions between 
and inside themselves [2]. For example, any two points on a very long string at some 
distance from each other can be very close together in space, or a point on a 
very long string can lie between two other points of the same string which are close 
together in space. If we consider the average length of the strings which do not wind 
around the torus and that of those which instead are not topologically contractable 
into a point, it comes out that the average length shows interesting implications coming 
from the strings own topology in the infinite volume limit [l]. In this physical limit 
(V-,  00) and for strings which do not wind around the torus the system prefers 
configurations in which strings have no intersection (or the string segments which pass 
through a four-point cell repel each other). Some kind of string-string interaction of 
the order of the excluded volume repulsion could be assumed to conclude that for 
these configurations, where strings have no intersection, strings are all SAWS. Whereas, 
the average length of strings with increasing total winding number shows exactly the 
opposite behaviour [ 11; many intersections are favoured. The latter strings might no 
longer be SAWS. 

We have simulated for the network of polymers 200 000 configurations on a V = 203 
lattice and the average of the quantities we consider is calculated over them. 

Let us define [9] an average linear size l(1) which measures an average distance 
between polymers with fixed length 1. Since this is a typical linear distance into the 
system we can identify it by the mean distance the centre of gravity (see below) of a 
polymer with fixed length 1 would have with respect to the centre of gravity of another 
polymer with the same length. 

Even if a little intriguing, the linear distances on the 3-torus we are dealing with 
are all intrinsically well defined just if they were taken in a space with free boundary 
conditions. In fact one of the most interesting results of [ l ]  is that in a lattice volume 
!V= N 3  there are no boundary effects on the physical results (such as scaling laws) if 
the length of polymers is at most 1 d N 2 .  Thus for the aims of the present letter the 
3-torus boundary conditions only artificially close the strings because we keep the root 
mean square of the following fit on lengths of order 5 x N (i.e. figure 1 for N = 20). 

Des Cloizeaux [lo] has developed a Lagrangian theory for a system of polymers 
with no fixed length. The only interaction considered in the model was given by the 
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1 

Figure 1. The expectation value of the centre of gravity distances between polymers are 
plotted against I for the N = 20 lattice. 

excluded volume repulsion in a two-parameter model. By this approach he deduced 
a fundamental scaling law in real space R' which has been formulated [9] as: 

where 5 is a function of the concentration C. We define [2] C as a function of the 
length I :  

C' is the critical concentration [9] of the system C'(1) = 1 /  RF( 1 ) 3  and R F ( l )  = al" is 
the Flory gyration radius with v = 1/2 for Brownian polymers and v = 3/5 for self- 
avoiding polymers. The a exponent is determined by the critical condition [9] that 
the exponents of R F  and C' must annihilate. 

The important point is that (1) is valid in the approximation C >> C' (or at intermedi- 
ate concentrations). We will see that, a posteriori, the verification of ( l ) ,  for the system 
at hand, implies that the system of polymers we generate is highly concentrated. 

The number density of polymers, n( e), with length 1 can be derived in the following 
way. We consider, instead of the end-to-end distance R of a closed polymer, its own 
perimeter size R = q1 + q2+ q3. q, ( i  = 1 , 2 , 3 )  counts the number of cells in the ith 
direction which bounds the cubic volume occupied by the polymer. For R one can 
write n ( R )  dR = R - 4  dR by dimensional analysis in three dimensions. Assume a 
,general fractal shape for the string 1 = a - ' R D  with D =  l / v .  Then we easily have 

which for 0 = 2  gives 

(2) 
From ( l ) ,  the definition of C(1) and (2), imposing the critical condition on a, we obtain 

n ( l )  = f a - 3 / 2 1 - 5 / 2  

~ ( r )  = b13/2 (3) 
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where the exponent 3/2  comes from the fundamental assumption that polymers have 
a Brownian shape; b is determined by a and the fractal dimension D. If (3)  is verified 
by the system then we gain two direct conclusions. First, these polymers are Brownian 
walks ( D  = 2) and, second, the system is highly concentrated (as we already stated for 

Now we define the mean distance of gravity centres for fixed 1 in our simulated 
( 1 ) ) .  

network of polymers as: 

where G(1) is the centre of gravity for the polymers: 
f ( k )  

Gk(l)= * i a l ( k ) , l .  ( 5 )  
J = l  

The vector r i  denotes the set of coordinates ri ,a of the k polymer in the 3 D  cubic 
lattice. The three spatial dimensions are denoted by j and a is the label of the polymer 
points. N (  1 )  is for the total number of distances between two polymers with the same 
length I ;  I (  k )  stands for the length of the k polymer and Nit,, is the number of Monte 
Carlo iterations for the statistical ensemble. Finally, Kronecker symbols 6 l ( k ) , l  and 8t.k 

have been introduced to consider, in ( 5 ) ,  the sum extended only on a fixed length 1 
and the sums in (4) for l ( l ) ,  respectively, extended only on different polymers with 
fixed length. 

In figure 1 we report the data for the mean distance of gravity centres l(1) as a 
function of the length I in the system of closed polymers. In figure 1 we see the 
possibility of a very good linear fit in the bilog scale. We calculate the root mean 
square fit of the data and find the following scaling law: 

I ( [ )  = 51" (6) 
with 5 = 0.488 f 0.005 and 7)  = 1.556 f. 0.005. 

As we see, the numerical results for our polymers are in good agreement with the 
theoretical predictions coming from equation (3) even if small deviations are evident. 
The reasons for such deviations are deeply related to the 'nature' of the statistical 
system we have simulated. 

On one hand, l(I) is very sensible to the correlations between polymers but much 
less sensible to correlations between points of the same polymer. In fact, the standard 
[9] definition of { as a function of the concentration of the system (with fixed I )  is 
that it is a certain average mesh size between two polymers. More exactly, this would 
mean averaging all the point-point distances between two polymers. Since it would 
be a time consuming numerical calculation to compute the point-point distances, we 
selected the gravity centre as a special point on the polymer. Thus, a very important 
approximation which saves computer time but loses some information, consists of 
restricting ourselves to the gravity centres between different polymers. By doing this 
we have also excluded contributions to the correlations coming from point-point 
distances measurable into the same polymer. But, since in most configurations polymers 
prefer to spread out themselves instead of spatially shrink into balls [2], it is not 
dangerous, in our opinion [9], to forget about the inner polymer correlations which 
would almost have a uniform distribution. 

On the other hand, a fundamental remark must be made on the 1 dependence of 
the concentration C = C(I ) .  Usually, in polymer physics, the system has fixed [9] 
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Figure 2. We show typical configurations of strings on a torus: ( a )  for strings of length 
I = 5 and I = 6, ( b )  for the longest string I = 694. 

length 1. A consequence is that the concentration C of each polymer system has been 
always I-independent. In our system [ 101 all possible lengths are living together. When 
we consider n(1)  we suppose to have a system with a ‘solute’ given by the closed 
polymers with length 1 into a ‘solvent’ given by the plaquette centres which are not 
polymer points plus the polymer points of the rest of the polymers with every other 
length different from 1. The quantity l(1) has been computed taking a measure on the 
solute. But, even if we constrain the measure on the solute in this ideal constructive 
way, the statistical information considered takes into account the complexity due to 
the simultaneous presence of all polymers with different lengths. In figure 2 ( a )  we 
report two subsystems of polymers together, each one with fixed but different lengths, 
I = 4 and 1 = 6 respectively, to graphically show how much it increases the complexity 
of the system. For completeness, we show in figure 2 ( b )  a configuration with just one 
very long string which fills the whole volume. Furthermore, the increase of concentra- 
tion (as defined above) can be seen going from figure 2 ( a )  to figure 2 ( b ) .  Generally, 
polymers with different lengths are correlated to each other. This means that correla- 
tions [2] between polymers with different lengths are present while we are focusing 
on a ‘solute’ of all polymers with fixed 1. Thus, important influences from outside are 
contributing on the solute to the behaviour of measurable quantities sensible to any 
kind of correlations. Any deviation from the theoretical predictions, such as those in 
( 6 ) ,  must be clearly considered in this picture. 
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